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Structural transformation from the AlCuFe icosahedral phase
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three dimensional models of translation defects
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Abstract. Unusual results are obtained by High Resolution Electron Microscopy (HREM) studies of the
1/1 cubic approximant phase of the (AlSi)CuFe icosahedral phase. We study, in a 3D model of AlCuFe
icosahedral phase, the possibilities of transformation of this structure into a periodic cubic structure. We
propose a model of transformation coherent with the experimental results.

PACS. 61.64.Br Quasicrystals

1 Introduction

A 1/1 cubic approximant phase has been synthe-
sized by substituting a few percent of Si for Al in
the canonical Al62Cu25.5Fe12.5 icosahedral phase. The
Al55Si7Cu25.5Fe12.5 phase, denoted α phase, is obtained,
almost without change in the chemical composition, by an-
nealing for 2 hours at 750 ◦C the as-quenched (AlSi)CuFe
icosahedral phase; its parameter is aα = 1.233 nm. The
X-ray powder diffraction pattern reveals a high struc-
tural quality; it is in good agreement with the calcu-
lated diagram for the p/q = 1/1 cubic approximant. The
kinetic of the transformation from the as-quenched icosa-
hedral structure (obtained as flakes) to the 1/1 cubic
structure is considerably faster than in the case of the
other AlCuFe approximants: typically, in the same range
of temperatures, 2 to 3 hours of annealing treatment in-
stead of several days [1].

We present (Sect. 2) experimental results obtained
on this new phase by High Resolution Electron Mi-
croscopy (HREM). The HREM study confirms the cubic
periodicity of the structure over large areas, but reveals
the presence of translation defects; the translation vec-
tors, determined by geometric phase analysis [2], are not
rational vectors of the cubic structure.

In the theoretical models (calculated by 6D→ 3D pro-
jection) of the transformation from icosahedral to approx-
imant structure, it is assumed a priori that the approx-
imant phase is a periodic arrangement of identical cells,
as in any crystalline structure. In the case of a cell as
small as the 1/1 cubic cell, such a model implies the whole
reconstruction of the structure. The (AlSi)CuFe icosahe-
dral phase contains very stable clusters (Bergman clusters
Sect. 3.1) and the rapidity of its transformation into the

1/1 cubic α (AlSi)CuFe phase seems to be incompatible
with a process of nucleation and growth.

The unusual results obtained by the HREM study lead
us to propose another hypothesis: the 1/1 cubic approxi-
mant structure could result from the assemblage of small
domains containing a few cubic cells which can be identi-
fied everywhere in the perfect icosahedral structure.

We describe these domains in a three-dimensional (3D)
model of the AlCuFe icosahedral structure [3–5], and
we identify the different translation vectors between
them (Sects. 3.1 and 3.2).

In Sections 3.3 and 3.4, the experimental results ob-
tained by HREM and geometric phase analysis are com-
pared to different assemblages of domains.

In Section 3.5, we describe structural models for the
transformation of the icosahedral phase into the 1/1 cu-
bic structure, which results from the best assemblages of
domains: in such cases, the translation vectors between
the domains correspond to the smallest distance between
atoms in the icosahedral structure.

2 Experimental results

2.1 HREM study

In the Al55Si7Cu25.5Fe12.5 α phase, annealed for 2 hours at
750 ◦C, large grains (several microns) separated by smooth
boundaries are observed; the bright field contrast is uni-
form and there are very few defects (Fig. 1a). The density
of defects is much higher in the Al57Si5Cu27Fe11 phase,
denoted α1 phase [6] (Fig. 1b). These defects are transla-
tion defects (see Sects. 2.2 and 3.4) which do not disappear
with annealing treatment. The comparison of Figures 1a
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Fig. 1. (a) Perfection of the Al55Si7Cu25.5Fe12.5 α phase, annealed for 2 hours at 750 ◦C. (b) Density of translation defects in
the Al57Si5Cu27Fe11 α1 phase, annealed for 48 hours at 650 ◦C.

and 1b shows that the characteristics of these phases are
very dependent on their chemical composition.

A cubic periodicity over large areas of the α struc-
ture appears on the HREM images along 〈100〉 and on
the diffraction pattern (Figs. 2a–2d). There is no evidence
for a centre of symmetry within the cell.

The contrast observed in Figure 2b is the most fre-
quently observed in the cubic approximant structure: all
the traces of planes belong to the cubic system. However,
it can be found, within the same sample, a different con-
trast (Figs. 2c and 2d): diffuse portions of traces of planes
are visible; their irrational orientation coincides with five-
fold planes of the “parent” icosahedral phase.

2.2 Translation defects

Translation defects separating large areas of perfect cubic
structure are observed in the α(AlSi)CuFe phase. Their
habit planes are frequently either {100} or {110} cubic
planes (Fig. 1b). We have already presented [7], the mea-
sure by geometric phase analysis of the translation vectors
between different domains. In all cases, the translations
measured in the observation plane are irrational fractions
of the cubic parameter. In the case of three defects meet-
ing at a triple junction [8], the translation vectors were
identified as vectors of the icosahedral phase.

3 Three dimensional (3D) model of structural
transformation from the icosahedral
to the cubic approximant phase

3.1 Structural model of the AlCuFe 1/1 cubic
approximant cell

A 3D model of the AlCuFe icosahedral structure has been
obtained by irrational projection in parallel space (3D real

space) of the nodes of a 6D hypercubic lattice [3,4,9]. It
was determined from a 6D neutron diffraction study [10]
that the AlCuFe icosahedral structure is defined in 6D
space by 3 atomic surfaces located at the N [000000]
and N′ [100000] nodes of a primitive lattice and at the
BC 1/2[111111] body-centre; the other BC′ 1/2[111111]
body-centre is vacant. The size and shape of the atomic
surfaces, in perpendicular space, determine the occupation
in real space of the nodes of the four sublattices:

I = P1 ⊕ P2 = (N⊕N′)⊕ (BC⊕ BC′).

Figure 3 is a two-fold section of this 3D model, previously
described by Le Lann and Devaud [5]. The BC node lo-
cated at the centre of this limited volume of icosahedral
structure is taken as the origin of coordinates. Five sets
of three orthogonal two-fold planes intersect at the origin
(x = y = z = 0); we select one set of orthogonal two-
fold planes perpendicular to the x, y and z axes; they are
mirror planes of this portion of the icosahedral structure.
Five-fold and three-fold planes are perpendicular to the
A5 and A3 axes. Each two-fold axis bears nodes belonging
to only one sublattice [11]; this allows a simple description
of the cubic cells.

Any AlCuFe approximant structure results from a ra-
tional projection, in real space, of the AlCuFe (6D) struc-
ture. Both icosahedral and approximant structures have
in common a volume of icosahedral structure that can be
larger than the periodic cell [8,12]. It results from these
constructions that a 3D model for the AlCuFe 1/1 cubic
approximant cell is necessarily a cube taken out of the 3D
model of the AlCuFe icosahedral structure.

Different models of this cell are presented on two-
fold sections of the icosahedral model (Figs. 4 and 5);
in all cases the 〈100〉 edges of the approximant cell are
parallel to one of the 5 sets of orthogonal two-fold axes
of the icosahedral structure. The edge length is aα =
aico

√
(8 + 12τ)/(2 + τ) = 1.229 nm in the AlCuFe model
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Fig. 2. 〈100〉 HREM images of the Al55Si7Cu25.5Fe12.5 α cubic approximant phase; the three images have been obtained on
the same sample. (a) Corresponding diffraction pattern. (b) All the traces of planes belong to the cubic system. (c) The diffuse
portions of traces of planes coincide with the orientation of five-fold planes of the icosahedral structure. The contrast observed
within the cell can be identified with the two-fold projection of the nodes of a triacontahedron (as in Fig. 8c): the N nodes of the
dodecahedron are shown by white circles and the N′ nodes of the icosahedron, by black circles. (d) In the same photographic
plate, at a distance of only 20 nm from Figure 2c, strong dots form a “square” group whose relative intensities vary from one
cell to the next.

where aico = 0.4465 nm. Two sections of the cells are
represented, one in the plane z = 0, the other in the
plane z = ±aico

√
(2 + 3τ)/(2 + τ) = ±1/2aα. (In order

to get simpler values for the coordinates of the icosahedral
planes, we approximate the edge length by aα = 1.228 nm
that corresponds to aico = 0.446 nm.)

Figure 4a, in the plane z = 0, represents the face of
a cell constructed on BC vertices, whose midsection (BC′
centre) is drawn in the plane z = ±1/2aα (Fig. 4b). And

reciprocally, Figure 4b represents the face of a cell con-
structed on BC′ vertices whose midsection (BC centre) is
shown in Figure 4a.

In these cells, the N and N′ nodes are the projections
of the 64 nodes of a 6D unit cell belonging to P1: 32 nodes
form a triacontahedron inscribed in the cubic cell (icosa-
hedron of radius τaico on N′ nodes, and dodecahedron
of radius 0.910τaico on N nodes in Fig. 4a and recip-
rocally in Fig. 4b); inside the cell, 32 nodes correspond
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Fig. 3. Two-fold section of a 3D volume of icosahedral structure centred by a BC • node. The largest circles are BC •, N′

and N nodes of the three occupied sublattices, located in the section z = 0; the smaller circles are projections of nodes located
in a slice of thickness z = ±0.332 nm. Each two-fold axis bears nodes belonging to only one sublattice; this allows a simple
description of the cubic cells.

Fig. 4. Structure of cubic cells constructed on BC • and unoccupied BC′ nodes as vertices and centre: (a) in the section

z = 0; (b) in the section z = ±1/2aα. In both cells there is a triacontahedron inscribed in the cell: icosahedron on N′ nodes

and dodecahedron on N nodes in Figure 5a and reciprocally in Figure 5b. The cluster surrounding the BC • nodes is a
Bergman cluster; a slightly modified Bergman cluster surrounds the BC′ node.
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Fig. 5. Structure of cubic cells constructed on N and N′ nodes as vertices and centre: (a) in the section z = 0; (b) in the
section z = ±1/2aα. Only some nodes of the triacontahedron inscribed in the cell are occupied by BC • nodes. The cluster
surrounding the N/N′ vertices and centre are “pseudo-Mackay” clusters.

to the orbits of the Bergman cluster [13] that surround the
BC centre (icosahedron of radius aico/τ on N nodes and
dodecahedron of radius 0.910aico on N′ nodes and recipro-
cally in Fig. 4b). This description of the cell presents simi-
larities with the description of the R Al5CuLi3 1/1 approx-
imant cell [14,15], and with the structure of the 1/1 cubic
AlPdMn approximant cell [16].

In the same way, Figures 5a and 5b represent cubic
cells constructed on N and N′ nodes as vertices and cen-
tre. The clusters surrounding these vertices and centre are
pseudo-Mackay clusters [15,17]: small dodecahedron of ra-
dius 0.910/τaico (partially occupied), icosahedron of ra-
dius aico, icosidodecahedron of radius 1.05aico. These cells
present similarities with the cell of the αAlMnSi 1/1 ap-
proximant [18–21].

However, in the α(AlSi)CuFe cell there is an impor-
tant difference which results from the occupied nodes of
the BC sublattice. The 64 BC and BC′ nodes of a 6D unit
cell belonging to P2 project on 3D atomic sites located on
orbits identical to those of P1; however while the nodes of
the N and N′ sublattices are fully occupied (the smallest
distance along a two-fold axis, equal to 0.290 nm, is in
the range of interatomic distances), the BC sublattice is
only partially occupied (smallest distance along a two-fold
axis = 0.759 nm). (The vacant nodes of the BC′ sublat-
tice are not represented on the sections of the icosahedral
structure). The occupied nodes of the BC sublattice (al-
ways surrounded by a Bergman cluster) are located on
the triacontahedron inscribed in the cell: they are on the
icosahedron in a cell centred by a N′ node (Fig. 5a) and on
the dodecahedron in a cell centred by a N node (Fig. 5b).
Their distribution on these orbits obeys the different local
symmetries of the icosahedral structure; thus the number
and the localisation of the occupied BC nodes can be dif-
ferent from a cell to the next one. Despite this asymmetric
occupation of the four sublattices, we define hereafter a
general description of the 1/1 cubic approximant cell:

– we select in the AlCuFe icosahedral model the cells
constructed on N/N′ vertices; the large number of

pseudo-Mackay clusters allows the identification of
such cells everywhere;

– we retain as convenient cells, only those in which the
occupied BC nodes are localised on the icosahedron
(or the dodecahedron) inscribed in the cell; thus there
is no disorder in the cell. However, their localisation on
these orbits can be different from one cell to another.
This can be considered as a partial occupation of the
sites on the orbits.

This restrictive definition of the cell allows the identi-
fication, in the icosahedral structure, of different domains
formed by a few “periodic” cells.

3.2 Domains of periodic cells in the AlCuFe
icosahedral structure

We described [5] in a 3D model of the icosahedral struc-
ture, large concentric orbits surrounding a local symmetry
centre. Here, there are around the BC centre (Fig. 6a),
a large icosahedron (12 N nodes, 20 faces in three-fold
planes) and a large dodecahedron (20 N′ nodes, 12 faces
in five-fold planes) whose edge length is equal to the edge
length aα of the 1/1 cubic unit cell.

In this section (z = 0) of the icosahedral model, we
have drawn a small domain of periodic cells constructed
on N′ vertices. The faces of these cells correspond to the
face represented in Figure 5a; the occupied BC nodes are
on the dodecahedron inscribed in the cell and their local-
isation on this orbit is different in the cells belonging to
the domain.

One can see that the edge parallel to y of the large do-
decahedron (shown by largest N′ circles in Fig. 6a) belongs
to this small domain of periodic cells. The (z = 0) two-fold
plane being a mirror plane of the icosahedral structure,
this edge is shared by 4 cells on N′ vertices. Figure 6b,
in the section z = ±1/2aα = ±0.614 nm, represents the
cells of the same domain, constructed on the N vertices
located at the centre of the preceding cells; their faces
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Fig. 6. Identification of a domain of periodic cells in two different sections of the icosahedral model: (a) in the section z = 0

the domain is linked to a dodecahedron edge parallel to y, shown by larger N′ circles; (b) in the section z = ±1/2aα the

same domain is linked to an icosahedron edge parallel to z, shown by a larger N circle.
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Fig. 7. Determination of another domain of periodic cells in the same sections of the icosahedral model: (a) in z = 0 the

domain is linked to an icosahedron edge parallel to x (larger N circles); (b) in z = ±1/2aα = ±0.614 nm it is linked to a

dodecahedron edge parallel to z, shown by a larger N′ circle.
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correspond to the face represented in Figure 5b (in this
case, the occupied BC nodes are on the icosahedron in-
scribed in the cell). The edge parallel to z of the large
icosahedron (shown by the largest N circle) is shared by
four cells on N vertices. Thus this domain is linked to both
a dodecahedron edge and an icosahedron edge respectively
perpendicular one to another.

The limits of the domain are not well defined. Within
the cells, the Bergman and pseudo-Mackay clusters either
share a five-fold face (in a cell on N′ vertices) or a three-
fold plane (in a cell on N vertices). On the borders of the
domains, the vertices of the cells are close to the Bergman
clusters located outside the domain: either the pseudo-
Mackay cluster cannot be complete, or a local reconstruc-
tion may occur.

Figure 7 represents another domain linked to an icosa-
hedron edge parallel to x in the section z = 0 (Fig. 7a),
and to a dodecahedron edge parallel to z in the section
z = ±1/2aα = ±0.614 nm (Fig. 7b).

A third domain of cells (not represented here) corre-
sponds to the association of an icosahedron edge parallel
to y in the section z = 1/2aα + 0.379 nm = 0.993 nm,
and a dodecahedron edge parallel to x in the section
z = aα + 0.379 nm.

These 3 domains and those symmetric with respect to
the three orthogonal two-fold planes, are thus related to
the 12 N nodes of the large icosahedron and to 12 over the
20 N′ nodes of the large dodecahedron.

The set of translation vectors between these 6 domains
can be easily determined (Fig. 8a): the 12 N nodes of
the large icosahedron and 12 over the 20 N′ nodes of the
large dodecahedron are linked by vectors of length aα (or
a multiple of aα) to N′ and N nodes of the triaconta-
hedron surrounding the BC centre. The smallest transla-
tion vector between two of these domains is equal to the
edge of the triacontahedron, which is a vector of length
aico = 0.4465 nm along a five-fold axis, joining N and
N′ nodes.

The 8 remaining N′ nodes of the dodecahedron, of co-
ordinates x = y = z = 0.993 nm, are on a cube of edges
parallel to x, y and z. They correspond to 8 more domains.
Along each diagonal of the cube (Fig. 8b), which is also an
icosahedral three-fold axis, there are three nodes belong-
ing to the same domain: N′ (x = y = z = 0.993 nm) on
the large dodecahedron; N′ (x = y = z = −0.235 nm) on
a very small cube inscribed in the central Bergman clus-
ter; and, at the centre of the cell, a N node (x = y = z =
0.379 nm) which is located on the triacontahedron. The
length of the N to N′ translation vector, between opposite
domains on the same diagonal, is 0.251 nm along a three-
fold axis (the two-fold projections of this vector along the
x, y, and z axis are only 0.145 nm). Figure 8c collects
the locations of all these nodes on a two-fold projection
of the triacontahedron.

Thus, in the volume of icosahedral structure here con-
sidered, ((3×2)+8) = 14 different but equivalent domains
of a few periodic cells can be identified.

3.3 HREM images of the α Al55Si7Cu25.5Fe12.5 cubic
approximant phase

The observation of various samples of the α
Al55Si7Cu25.5Fe12.5 phase leads to the following re-
marks. The definition of the HREM image is better in the
cases where elements of the icosahedral structure can be
observed: diffuse traces of planes parallel to icosahedral
five-fold planes, or identification of the two-fold projection
of the nodes of a triacontadron inscribed in each cell (as
in Figs. 2c and 2d).

The BC′ sublattice being vacant in the AlCuFe icosa-
hedral structure, this triacontahedron corresponds neces-
sarily to an icosahedron on N′ nodes and a dodecahedron
on N nodes as in Figure 4a (or reciprocally as in Fig. 4b).
The simplest hypothesis would be that this contrast cor-
responds to the internal structure of a cell similar to the
R Al5CuLi3 cell (Fig. 4a). However, the BC centres of
the cells, occupied in the AlCuFe icosahedral phase by Cu
atoms surrounded by a Bergmann cluster, are not appar-
ent on these images; there is no evidence for a symmetry
centre. On the contrary, one can identify the four dots
of coordinates x = y = z = ±0.235 nm located on the
Bergman cluster in Figure 8b.

Thus the contrast observed within the cells corre-
sponds better to Figure 8c which reveals the superposition
of different domains of periodic cells in the icosahedral
structure, than to the structure of the cell represented in
Figure 4a.

These observations lead us to the hypothesis that the
cubic approximant structure could result from the super-
position of domains “inherited” from the “parent” icosa-
hedral structure. The number and nature of the preserved
domains can be different in various parts of a sample;
that would explain some surprising results, incompatible
with the concept of periodic arrangement of identical cells:
particularly, the variation (Fig. 2d) from one cell to the
next, of the relative intensities of a group of 3, 4 or 5 dots
brighter than the others.

A similar “square” group of intense dots is apparent
too in Figure 2b, taken out of the same sample; in this
case, there are no traces of five-fold planes and the tria-
contahedron cannot be identified; the structure seems per-
fectly periodic but the dots are less sharp.

It cannot be said if the differences between these
three kinds of images result from the number and nature
of the domains of periodic cells through the thickness of
the sample or if they correspond to different stages of the
transformation into the cubic structure.

3.4 Translation defects in the α Al55Si7Cu25.5Fe12.5

cubic approximant phase

Figure 9a is an example of translation defects between do-
mains issued from different regions of the “parent” icosa-
hedral phase.

– The contrast observed within the cells is the same on
both sides of the boundary, so we suppose that there
is no rigid-body translation along the z axis.
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Fig. 8. Translation vectors between the different domains of periodic cells. (a) The 6 domains linked to edges of the large
icosahedron and the large dodecahedron are related by vectors of length aα to N/N′ nodes of a triacontahedron surrounding
the BC centre. The smallest translation vector between them is equal to the edge of this triacontahedron (0.4465 nm along
a five-fold axis). (b) The 8 remaining domains are linked to the N′ vertices of the large dodecahedron which form a cube;
along a diagonal of this cube there are three nodes within a cell: N′ (x = y = z = 0.993 nm) on the large dodecahedron; N′

(x = y = z = −0.235 nm) on a very small cube inscribed in the central Bergman cluster; and, at the centre of the cell, a N node
(x = y = z = 0.379 nm) which is located on the triacontahedron. The N to N′ translation vector between opposite domains on

a same diagonal is 0.251 nm along a three-fold axis. (c) Two-fold projection of the translations between the 14 domains.

in z = 0; X nodes in z = ±0.235 nm = ±(0.993−1.228 nm); nodes in z = ±0.379 nm; nodes in z = ±0.614 nm.

– Both domains are separated by the translation defect
in such a way that the traces of the (110) and (310)
planes are not misaligned through the boundary. (One
can observe at glancing angle the misalignment of the
traces of the (110), (100) and (010) planes.)

– The measure, by geometric phase analysis of the
rigid body translation components along the x and
y axes leads to a vector whose length and orienta-
tion are nearly aico = 0.4465 nm along a five-fold
axis. This translation vector may correspond to any
one of the N → N′ translations between different
domains of periodic cells: for example, in the sec-
tion z = 0, the domains drawn respectively, on N′

nodes (Fig. 6a) and N nodes (Fig. 7a), or in the section
z = 1/2aα = 0.614 nm, the domains drawn respec-
tively on N nodes (Fig. 6b) and N′ nodes (Fig. 7b).

We have superposed in Figure 9b, the domains on N
and N′ nodes represented in the section z = 0 (Figs. 6a
and 7a). It appears that the N and N′ traces of the
(110) plane and (310) plane are very close one by another
but not exactly superposed. Their superposition could be
achieved by a small additional translation which may ex-
plain the diffuse streaks parallel to the traces of five-fold
planes in Figure 9a.
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Fig. 9. Translation defect in the
αAl55Si7Cu25.5Fe12.5 cubic approximant
phase. (a) The traces of the (110) and
(310) planes are not misaligned through the
boundary. The translation vector measured
by geometric phase analysis, is nearly equal
to aico = 0.4465 nm along a five-fold axis.
(b) Superposition of 2 domains of periodic

cells on N and N′ nodes, translated one
from another by this vector; the traces of the
(110) and (310) planes corresponding to each
domain are not exactly superposed.
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Fig. 10. Junction between 2 domains of periodic cells on N and N′ nodes issued from different dodecahedra of the
icosahedral structure. The domain drawn on N nodes is equivalent to the domain shown in Figure 7a; the domain drawn on N′

nodes is equivalent to the domain shown in Figure 6a. The two-fold components of the translation vector of length 0.251 nm,
along a three-fold axis, are x = 0.145 nm, y = 0.9 nm and z = 0.

Thus, small rearrangements within the structure could
improve the perfection of a cubic phase resulting from a se-
lection of different domains in the icosahedral phase. Such
a process rather corresponds to a displacive transforma-
tion than to a reconstructive transformation.

3.5 Structural transformation from the icosahedral
to the cubic approximant structure

The icosahedral structure can be described as an aperiodic
distribution of dodecahedra of edge aα, identical to the
dodecahedron used in Figure 8 to describe the different
domains.

The growth of any nucleus of cubic structure from only
one dodecahedron would need the reconstruction of the
whole icosahedral structure. This seems to be unlikely;
it is in contradiction with the stability attributed to the
Bergman clusters and with the rapidity of transformation
of the icosahedral (AlSi)CuFe phase into the cubic phase,
as reported by Quivy et al. [1]. We rather propose that
domains of a few cubic cells, issued from different dodeca-
hedra, could join together in such a way as to construct a
periodic structure. In this hypothesis, the Bergman clus-
ters are already at their convenient places in the domains;

however, the extension of the periodic structure needs a
partial reconstruction between joining domains, and, in
any case, a translation vector exists between the domains.

The translation defects which are easily detected by
HREM (Fig. 9) and [7,8] correspond to the large trans-
lation vectors which can be measured by geometric phase
analysis. However, domains separated by smaller transla-
tion vectors can also participate in the structural transfor-
mation of the icosahedral phase. Figure 8b shows domains
linked by a translation vector of length 0.251 nm, along a
three-fold axis of the icosahedral structure which is also a
〈111〉 direction of the cube. The components of the trans-
lation vector in the {100} planes are only 0.145 nm.

Figure 10 is a more general example of assemblage of
domains: in this case the domains belong to two different
dodecahedra of edge aα. (The domain drawn on N nodes
is equivalent to the domain shown in Fig. 7a; the domain
drawn on N′ nodes is equivalent to the domain shown in
Fig. 6a.) Both domains have in common the {100} plane of
the figure. The translation vector in this plane is 0.251 nm
along a three-fold axis (its components are x = 0.145 nm,
y = 0.9 nm, z = 0).

One may suppose that in both cases the correspond-
ing translation defect between the domains either cannot
be detected by HREM or disappears by relaxation during
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the transformation process. These examples could explain
why, on the HREM images of the α (Al55Si7Cu25.5Fe12.5)
cubic approximant phase, one can observe large areas
without apparent defect.

4 Conclusion

The study in a 3D model of AlCuFe icosahedral struc-
ture of the possibilities of transformation of an icosahedral
structure into a periodic cubic structure leads to a model
of transformation which could explain the unusual results
obtained by High Resolution Electron Microscopy study
of the α Al55Si7Cu25.5Fe12.5 1/1 cubic approximant phase.
This cubic structure could be described as the superpo-
sition of various domains of periodic cubic cells “inher-
ited” from the “parent” icosahedral structure. The trans-
formation would result from an assemblage of some of the
domains, followed by slight rearrangements in the cubic
structure.

We would like very much to thank Dr M. Hÿtch for helpful
discussions.
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